首页> 外文OA文献 >Sources identification using shifted non-negative matrix factorization combined with semi-supervised clustering
【2h】

Sources identification using shifted non-negative matrix factorization combined with semi-supervised clustering

机译:使用移位的非负矩阵分解来识别源   结合半监督聚类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Non-negative matrix factorization (NMF) is a well-known unsupervised learningmethod that has been successfully used for blind source separation ofnon-negative additive signals.NMF method requires the number of the originalsources to be known a priori. Recently, we reported a method, we called NMFk,which by coupling the original NMF multiplicative algorithm with a customsemi-supervised clustering allows us to estimate the number of the sourcesbased on the robustness of the reconstructed solutions. Here, an extension ofNMFk is developed, called ShiftNMFk, which by combining NMFk with previouslyformulated ShiftNMF algorithm, Akaike Information Criterion (AIC), and a customprocedure for estimating the source locations is capable of identifying: (a)the number of the unknown sources, (b) the eventual delays in the signalpropagation, (c) the locations of the sources, and (d) the speed of propagationof each of the signals in the medium. Our new method is a natural extension ofNMFk that can be used for sources identification based only on observationaldata. We demonstrate how our novel method identifies the components ofsynthetic data sets, discuss its limitations, and present a Julia languageimplementation of ShiftNMFk algorithm.
机译:非负矩阵分解(NMF)是一种众所周知的无监督学习方法,已成功用于非负加性信号的盲源分离.NMF方法要求先验原始源的数量。最近,我们报道了一种称为NMFk的方法,该方法通过将原始NMF乘法算法与Customemi-supervised聚类相结合,使我们能够基于重构解决方案的鲁棒性来估计光源的数量。在这里,开发了一种称为ShiftNMFk的NMFk扩展名,该扩展名通过将NMFk与先前制定的ShiftNMF算法,Akaike信息准则(AIC)相结合,并且一种用于估计源位置的自定义程序能够识别:(a)未知源的数量, (b)信号传播的最终延迟,(c)信号源的位置,以及(d)每个信号在介质中的传播速度。我们的新方法是NMFk的自然扩展,仅可以基于观测数据将其用于源识别。我们演示了我们的新方法如何识别合成数据集的组成部分,讨论其局限性,并提出ShiftNMFk算法的Julia语言实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号